CERTAIN ASPECTS FROM SIMILARITY THEORY
APPLICABLE TO THE PROCESSES OF
MOMENTUM TRANSFER '

V. V. Kharitonov UDC 530.17

Based on the "triple analogy" between the processes of heat transfer, diffusion, and momentum
transfer, we introduce the concept of two independent similarity criteria to describe the hydro-
dynamics of fluid motion, analogous to the Nusselt and Stanton numbers.

The agreement between the equations describing the transfer processes for heat, mass, and momen-
tum are referred to as the "triple analogy" [1]:

g=—h gradT=~aM; (1)
ay
j=—D grad C; (2
0 (pu)

T=—pgrady=—v s (3)
dy

where a, D, and v are the coefficients of molecular transfer. Particularly for turbulent flows, these gen-
erally do not lend themselves to analysis, We are therefore compelled to resort to empirical coefficients,

The coefficients o and § are thus introduced into the processes of heat and mass transfer by means of the
relationships

q = oAT,
j=BAC.

(4)
(5)
It is not ¢, but the ratio oz/cpp that is the analog of 3 in heat transfer,

It follows from similarity theory that & and 8 can be used to find two different dimensionless numbers,
i,e., the Nusselt number Nu and the Stanton number St.

For the heat-transfer process we will thus have

Nu= L gt @
A ool

Correspondingly, for the mass-transfer process
Nu, = L, s, =P
) D u

The introduction of such numbers is particularly convenient because the Nusselt number is constant
for purely molecular transfer (particularly for laminar flows), while for turbulent flows it is the Stanton
number that is virtually constant [1, 4], because of its rather weak dependence on Re.

Since a complete physical analogy exists between the transfer processes of heat, matter, and momen-
tum, in analogy with o and 8 we introduce the coefficient of momentum transfer (the coefficient of external
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friction) y according to the relationship
T = yAu. (6)

In particular, for the conditions of the internal problem (flow in tubes) we have 7y = Yy

The coefficient v is expressed in units of [ML“ZT‘ij, so that it is not the actual coefficient y but the
ratio y/p that is the analog of 8 and oz/cpp; this ratio is also expressed in units of linear velocity ([LT™!]).

With the transfer coefficient introduced in this manner we form the corresponding criteria, The
Nusselt number for the momentum transfer is Nu, = yL/u and the Stanton number StT = u/pu.

As follows from the conclusions of similarity theory, the Nusselt and Stanton numbers must be func-
tions of the criteria characterizing the physical properties of the medium and the nature of the motion, i.e.,
the Prandtl (Pr) and the Reynolds (Re) numbers. Since the momentum-transfer process is independent of
Pr (Pr, = v/v=1), it follows that

Nu; =f(Re), St; =F(Re).

We will determine this functional relationship on the example of the internal problem, thus associating
the newly introduced criteria with the earlier employed hydraulic characteristics. Since it is possible to
write that the tangential stress

T = — p’ .d£
dr’
the frictional force F is equal to
du
F=—uS—,
K dr

where S = 2rryl is the friction surface, and the work of the frictional forces per unit length (per 1 kg of
liquid flow) *

Fl 2nrll du ol
er——‘*z——p,-—'—‘z—"— =——To.
fip alp” dr T
Hence
ero.o
Ty =
Y

or, using the hydraulic-resistance coefficient z,

Since by definition 7 = yu,y, we finally find that the momentum-transfer coefficient y is equal to

Z
V=g e

Substituting this value into the expressions for Nu_ and St_, we can write

2 Uy z
Nu = —— ___3.V_ = —— Re
t 8 v 8
and
z
=5~
Since for a laminar flow we have
8l

L =—">%u
r prg av

for a parabolic law of velocity distribution over the cross section [2], we find 7 = 4pu,,/ro and y = 4p/r.

*For simplicity of the consideration we will agsume that the fluid is incompressible and exhibits a density
that is constant over the cross section,
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Consequently, for a laminar flow we have

N == § = const,

U lam

which is what follows from the conclusions of similarity theory, and namely,

St = §/Re.

Tlam
Using this value, it is not difficult to find the familiar relationship for the hydraulic-resistance coef-
ficient in the laminar regime:

64
z = —.
Re
It is, in particular, from the constancy of St.. in the regime of developed turbulence that we draw the con-
clusion that the coefficient of hydraulic resistance is constant and that it is independent of the flow regime.

Having introduced the conditional concept of a reduced film thickness, according to the relationship

y = u/§,
we find
5B _ 4o
Y Nu,
For a laminar flow
7,
Slam™= —>.
lam 16

In the case of a developed turbulent flow the averaged velocity over the cross section varies loga-
rithmically [3]:

/ 1
= 4/ T T ;
u=\ -———p " Iny+4C.

Integration over the entire cross section, with consideration of the experimental data from [2, 3],
yields

— / 1151,
Hay— ]/%(1.94 F5.75 g Gmo)'

~ Play

To= Yipy==
(1.94+5.75 g

Hence

8 bl

The expressions for the dynamic analogs of Nu and St for turbulent flow will have the form

Re
Nu, = _
b 7B
e ( 1.9445.75 Ig M)
Op1
and
11.57,\2
Steppp = (1‘94—1—5.75 Ig 50y 0) = const.
Since
11.5d, 11.5v

P ReVSt, St

the velocity at the edge of the laminar layer can be defined as

155



Uy = % Re St; 4= 11.51,,7 St..
0

It is not qifficu.it to show the procedure for the experimental determination of vy, v, Nuz,,..p,, and St Tourb’
Indeed, since [3]

u U
—max "7aV _. D) = const,

we find that

Then, when D = 3,56, we have [2]

- 2
_ m
¥y = 0.0785 puav< max | ) :

Uay
L_[' 2
Nue, = 0.0785 Re (T'"L 1 ) ,

Ugy

St

Tturb

- 2
— 0.0785 (L"ﬁ~ i ) .

Uy

The Nu.. and St introduced in this manner are also easily associated with the widely used resistance
factor f defined by

~2
U
o= p———2 L,
Indeed, if by definition 7, = yu,, We have
f -
V= Pl

and then

Nu, = ~£—- Re, St,= —);—
Using the local turbulence theory {4], we can obtain the relationship between the criteria of heat and mass

transfer and the criteria newly introduced in the form
Mo

11 S’ dn
st St | A@m)°
0

+

Pr v

g
L =5 an__
VS )T Am

v

0

The variable 7 is introduced according to the relationsghip

n=; St%ry.
Accordingly, from the Prandtl hypothesis, on a laminar sublayer of thickness §;, we will have
St =St + Ea—‘(&-(?r —1) = St! 4+ Rey, (Pr—1),
while according to the Landau and Levich theory [5, 6], for large values of the Prandtl number, we have

St Pra/ ~ in ) 25t
x
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In the last expression n is a universal empirical dimensionless constant.

Equating (3) and (6), we find

du
Ay = —p—=,
Y W dy
from which, after simple transformations, we will have
o Ngy- W L e fdy du
B ‘ dy Au Au/ L dy
or
Nuy = — grad u.

Analogously we can write
Nu= —gradT, Nu, = —gradC.

Consequently, a general rule is the equality between the Nusselt number and the gradient of the cor-
responding field, in dimensionless coordinates.

We can thus see that the newly introduced dynamic analogies of the Nusselt and Stanton numbers for
momentum transfer are well coordinated with system of earlier used criteria and make it possible uniquely
to describe the transfer processes of heat, matter, and momentum in laminar and turbulent flows.

NOTATION
q is the heat flux;
j is the diffusion flux;
T is the tangential [shear] stress;
a is the thermal diffusivity;
D is the diffusion coefficient;
v is the kinematic viscosity;
A is the thermal conductivity;
i is the dynamic viscosity;
T is the temperature;
C is the concentration;
u is the velocity;
p is the density;
c is the specific heat capacity;
o, B,y are the transfer coefficients for heat, matter, and momentum;
Nu is the Nusselt number;
St is the Stanton number;
Re is the Reynolds number;
Pr is the Prandtl number;
v,i,r,d are linear dimensions;
F is the force of surface friction;
Ly is the work of the friction forces;
M is the mass;
L is a characteristic dimension;
I is the length;
8.1 is the boundary-layer thickness;
av denotes an average;
lam denotes laminar flow;
turb denotes turbulent flow;
max denotes the maximum;
0 denotes the tube wall.
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